
Regufoam Vibration Overview

Regufoam[®] vibration is a mixed-cell polyurethane foam, developed and engineered for vibration and structure-borne sound isolation. It is available in 12 unique types, each for a specific load range.

Regufoam vibration offers outstanding internal damping and low frequency isolation at minimal deflection. This material comes in standard thicknesses of 25 mm (1") and 12.5 mm (½") and can be installed in multiple layers to achieve total thicknesses of 37.5 mm (1 ½"), 50 mm (2") or more.

Supplied dimensions:

Rolls, each 59" x 16.4' (1,500 x 5,000 mm) Sheets, each 59" x 3.3' (1,500 x 1,000 mm)

Regufoam vibration Color		150 ^{plus} Green	190 ^{plus} Yellow	220 ^{plus} Purple	270 ^{plus} Blue	300 ^{plus} Black	400 ^{plus} Grey	510 ^{plus} Beige	570 ^{plus} Rose	680 ^{plus} Turquois	740 ^{plus} Red	810 ^{plus} Brown	990 ^{plus} Orange
Max. static load	psi N/mm²	1.6 0.011	2.6 0.018	4.1 0.028	6.1 0.042	8.0 0.055	16.0 0.11	32.0 0.22	44.0 0.30	66.0 0.45	88.0 0.60	124.0 0.85	363.0 2.50
Optimum load range	psi	0.6 to 1.6	1.6 to 2.6	2.6 to 4.1	4.1 to 6.1	6.1 to 8.0	8.0 to 16.0	16.0 to 32.0	32.0 to 44.0	44.0 to 66.0	66.0 to 88.0	88.0 to 124.0	124.0 to 363.0
Tensile strength ¹	psi N/mm²	45.0 0.31	58.0 0.4	72.5 0.5	130.5 0.9	174.0 1.2	217.6 1.5	348.1 2.4	420.6 2.9	522.1 3.6	580.2 4.0	667.2 4.6	1,000.8 6.9
Mechanical loss factor ²		0.28	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.12	0.11	0.10	0.09
Static modulus of elasticity ³	psi	8.7 to 23.2	14.5 to 36.3	21.8 to 50.8	36.3 to 65.3	50.8 to 84.1	87.0 to 145.0	159.5 to 246.6	377.1 to 420.6	290.1 to 420.6	623.7 to 855.7	783.2 to 1,160.0	2,901 to 11,313
Dynamic modulus of elasticity ⁴	psi	21.8 to 55.1	36.3 to 79.8	50.8 to 104.4	87.0 to 152.3	98.6 to 181	174 to 290	319 to 537	769 to 943	1,015 to 1,450	1,291 to 1,886	1,595 to 2,393	5,947 to 23,206
Compression hardness⁵	kPa	14	22	22	63	82	170	330	620	840	1,050	1,241	3,640

Regupol America, LLC is a product manufacturer and does not represent itself as a consultant, engineer, or advisor in construction methods, standards, and compliance. Therefore, Regupol America only warrants its products under its standard limited warranty (available by request), and does not represent or warrant any advice, suggestions, instructions, whether formal or informal, oral or written, in conjunction with any sales of its products. Any such advice is not intended for a particular purpose and should not be acted or relied upon as such. Any such advice is not represented as being all-inclusive, correct, complete or up-to-date.

1 Measurement based on DIN EN ISO 1798

 Measurement based on DIN 53513; load-, amplitude- and frequency-dependent.

- Measurement based on an EN 826.
- 4 Measurement based on DIN 53513; depending on frequency, load and thickness.
- 5 Measurement based on DIN EN ISO 3386-2; compressive stress at 25 % deformation, depending on thickness.

The information and data contained herein are based on industry accepted testing, manufacturing tolerances and prior product usage as set forth. It is intended as descriptive of the performance characteristics and capabilities of Regupol/Regufoam and does not certify applicability for any particular or specific project. Technical assistance, calculations and design recommendations are available from Regupol America, and are subject to terms and conditions provided upon request.